Геодезия

Хистограмата като оценка на качеството на аерофотоснимки


Инж. Красимир Методиев

krasun@mail.bg

 

Аерофотоснимките са основа за картиране във фотограметрията. Всяко нещо, когато е направено не както трябва още в основата си, впоследствие става невъзможно неговото качествено развитие. Хистограмата като понятие присъства много често във фотографските изображения – всеки дигитален фотоапарат предлага такава функция. Почти никой не се опитва да разбере характерните криви линии, а за качеството на снимката се съди субективно, „на око“. Докато при обикновените фотоснимки това не е фатално, при фотограметричните изображения с висока резолюция, каквито са аерофотоснимките и космическите снимки, трябва да има друг критерии за оценка. Преди да обясним смисълът на хистограмата, нека видим какво представлява растерната графика и как е представена математически.

 

Пикселът е най-малката градивна частица на дигиталното растерно изображение. Неговият цвят се определя от степента, в която присъства всеки един от трите основни цвята – червено, зелено и синьо (Red, Green, Blue). Правоъгълната матрица с размер MxN пиксела, представлява растерно изображение, пример за което е даден на следващата графика.

 

Raster_Frame.jpg

 

Част от растер, на който се виждат отделните пиксели

 

Съвкупността от пиксели човешкото око възприема като едно цяло изображение, което формира дигитално копие на заснетия обект. Нека обаче да разгледаме в какви граници могат да се променят стойностите за цветовете на един пиксел.

RGB_Value.jpg

 

RGB стойности за всеки пиксел

 

За всеки един цвят Red (R), Green (G) или Blue (B) стойностите за неговото количество са крайни и варират между 0 и 255. Например най-светлият пиксел от горната схема има RGB формула R=240,G=239,B=248. Понякога тези стойности се дават в проценти или за същият пиксел може да се запише R=94.12%, G=93.73%, B=97.25%. Общото количество на Red, Green и Blue цветовете в един пиксел определят неговата яркост. Формулата на пиксела в горния десен ъгъл е R=100, G=126, B=104 и той е значително по-тъмен от съседния. Следвайки тази логика, идеално белият пиксел има формула R=255, G=255, B=255, а идеално черният се записва като R=0, G=0, B=0.

 

Забележете, че отделните цветове участват във формирането на яркостта с различни тежести. Физиологичните особености на човешкото око определят най-висока чувствителност към зеления цвят, след това към червения и най-слабо възприемаме синия цвят, затова във формулата на яркостта коефициентите пред R, G и B са различни.

 

Чрез различни софтуерни филтри, параметрите на аерофотоснимката могат да се променят. В резултат на това ние възприемаме дадено изображение като контрастно или с недостатъчна осветеност. Гледайки двата варианта на тестовото изображение, почти всеки човек, запитан коя снимка е по-добра, ще посочи варианта от дясно. По-наситените цветове и контраст правят снимката по-привлекателна за окото и така попадаме в капана на субективната човешка преценка.
Test_Original.jpg Test_AutoCorrection2.jpg

Оригинално и автоматично коригирано изображение

 

В крайна сметка, ние, като инженери, не участваме в конкурс за красота, а се борим за постигане на качествена радиометрия на аерофотоснимките, което ще ни позволят максимално да извлечем полезната информация от дигиталното копие на обекта. Поради тази причина, ще разгледаме подробно хистограмата като оценка на качеството, така че да се убедите, че лявата снимка на горната графика в много по-добра за работа от автоматично коригираната снимка.

 

Тестовото изображение е с размер M=638 и N=425 пиксела, като директно можем да запишем 638х425 или общо 271150 пиксела. Ако проверим RGB формулата на всеки един от тези 271150 пиксела, ще получим следното:

Ниво 0-255

Брой пиксели

 

Level

Red

Green

Blue

0

0

0

0

1

0

0

0

2

0

0

0

3

1

0

0

4

0

0

0

5

3

0

0

 …6-94…

95

3321

985

5778

96

3411

999

5939

97

3568

1068

6158

98

3697

1127

6066

99

3908

1148

6150

 …100-247…

248

0

2

0

249

0

1

0

250

0

0

0

251

0

1

0

252

0

0

0

253

0

0

0

254

0

0

0

255

0

0

0

 

Histogram.jpg

  Таблица и графика на разпределението на пикселите по брой за всяка RGB стойност

 

Данните в таблицата означават, че имаме само един пиксел със стойност R=3. Ако погледнем за ниво 95 ще открием, че в цялото изображение имаме 3321 пиксела с R=95, 985 пиксела с G=95 и 5778 пиксела с B=95. Когато данните от таблицата бъдат представени графично, получаваме хистограма на изображението, като по хоризонталната ос са нанесени нивата на съответните цветове от 0 до 255, а по вертикалната ос са означени броят на пикселите, който имат тази стойност на Red, Green или Blue цвета. Съвместната обработка на трите цвята ни дава представа за яркостта на пикселите, затова на следващите графики най-горната хистограма (с черен цвят) представлява статистическа оценка на яркостта на изображението, изчислена по дадената формула.

 

По какъв начин можем да оценим качеството на една аерофотоснимка, базирайки се на данните от хистограмата? В общия случай, разпределението на броят на пикселите трябва да се подчинява на закона за нормалното разпределение на случайна величина.

Norm_Dist.png

Нормално разпределение на случайна величина

 

В зависимост от заснетия обект, формата на хистограмата може да варира в широки граници, но за да стане ясно какво трябва да следим при аерофотоснимките, ще дадем отделни примери. Като начало нека да разгледаме оригиналното изображение с хистограмите на яркостта на червения, зеления и синия цвят.

Test_Original.jpg Test_Original.jpg-Hist.jpg

Оригинална аерофотоснимка с правилна хистограма

 

Въпреки че се виждат повече от един връх на хистограмата, в това няма нищо нередно. Графиката в лявата и дясната си част е достатъчно далеч от стойностите 0 и 255 и като цяло нито е прекалено заострена, нито заоблена. Това, че нямаме пиксели със стойности 0-15 и 240-255 означава, че в нашето изображение липсват напълно черни и бели пиксели.

Test_Brig_Low.jpg Test_Brig_Low.jpg-Hist.jpg

Понижена яркост – хистограмата клони на ляво към стойност 0

 В следващия случай нека намалим яркостта на изображението до определена степен. Математически това намаляване се изразява в по-ниски RGB стойности на пикселите. На графиката се вижда, че голяма част от пикселите са с яркост нула, т.е. абсолютно черни. Ако трябва да сме напълно точни, данните от таблицата сочат, че имаме 13826 пиксела с RGB стойности около нула. С други думи тези пиксели вече не носят никаква информация за заснетия обект и можете да забележите, че за разлика от оригиналната снимка, при тази със понижена яркост, реката и пътя в сянка изобщо не се виждат. Обработено и предадено по този начин изображение не подлежи на никакви софтуерни филтри и фотограметристите, които се опитват да картират реката и пътя, няма да успеят в местата, където дърветата хвърлят сянка.

Test_Brig_Hi.jpg Test_Brig_Hi.jpg-Hist.jpg

Повишена яркост – хистограмата клони на дясно към стойност 255

 

При повишаване на яркостта ситуацията е аналогична, но с обратен знак. Забелязва се, че хистограмата е силно изтеглена в дясно, където са по-високите стойности на RGB. Тук имаме отново загуба на информация, но не в сенките, а в светлите места като бетонни площадки, насипана скална маса, пясък и т.н. След увеличаване на яркостта, десетки хиляди пиксели са придобили RGB стойности 240-255, т.е. те са станали почти или абсолютно бели. Отново имаме ценна информация за обекта, която завинаги е загубена.

Test_Cont_Low.jpg Test_Cont_Low.jpg-Hist.jpg 

Понижен контраст – хистограмата е с остър връх

 

Когато контрастът се понижи, математически това се изразява във все по-голямо стесняване на диапазона, в който варират RGB стойностите на пикселите. Снимката като че ли „посивява“ и хистограмата става по-остра, групирайки в центъра на абсцисата пиксели със стойности близки до 127. По този начин има опасност да се загубят по-малки детайли от изображението вследствие на занижения контраст.

Test_Cont_Hi.jpg Test_Cont_Hi.jpg-Hist.jpg

Повишен контраст – хистограмата е заоблена и разтеглена в двата края

 

При обратния вариант, когато контрастът се повишава, хистограмата се разтегля към двата края и се заоблят върховете. Достатъчно е да сравните средните стойности на RGB (Mean) за всеки един от случаите, за да се убедите в това. Тук вече се появяват симптомите на първите два случая, но обединени в едно – имаме загуба на информация поради наличието на абсолютно бели и абсолютно черни пиксели, което е пагубно за бъдещата работа с изображението.

Test_AutoCorrection2.jpg Test_AutoCorrection.jpg-Hist.jpg

Автоматична корекция по яркост, контраст и цветове – хистограмата е разтеглена в двата края

 

Много софтуерни продукти предлагат автоматична корекция по контраст, яркост и цветове. След подобна обработка снимките придобиват по-свеж вид и операторът оставя изображението така, както го възприема за добро чисто субективно. Обаче ако погледнем хистограмата, ще стане ясно, че в тази аерофотоснимка отново има пиксели с критично ниски и критично високи RGB стойности, близки до 0 и 255. Както вече споменахме, оттук нататък ние нямаме никакъв шанс с какъвто и да било софтуер да „върнем“ загубената информация, която са носили тези пиксели за обекта.

 

Забележете, че ако се работи с оригиналния вид на изображението, фотограметристът, който картира обекта, може да променя яркостта, контраста и цветовете на снимката само на своят монитор, без коригираната снимка да се съхранява. По този начин имаме запазване на качествен оригинал и персонална настройка според специфичните особености на възприятие за всеки човек. На практика обаче се получава, че всеки променя настройките на изображението, както си иска, и в крайна сметка потребителят получава ортофотоплан с голяма загуба на информация. Например, при автоматично коригираната снимка имаме 12126 пиксела с яркост със стойности 0-15 и 240-255 от общо 271150 пиксела, което прави 4.47% загуба на информация.

 

Много или малко са тези 4.47% загуба? След георефериране размерът на един пиксел върху терена има стойност 0.10 м. Площта на тестовата аерофотоснимка обхваща 2711.5 м2 и 4.47% представляват 121.2 м2 загуба, което не е никак малко.

 

Сами разбирате, че всяко изображение е строго специфично според заснетия обект, техниката, с която е снимано или сканирано и много други фактори, затова не може да се каже, че тази или онази хистограма е правилна. Спазвайки законът за нормално разпределение и вниквайки в същността на хистограмата, ние имаме инструмент, с който обективно можем да оценим качеството на една аерофотоснимка преди да стигнем етап на картиране.

Автор

Super User

И все пак тя се върти…
Rotating_earth
Rotating_earth
От категорията
Гео-портал на минестерството на отбраната

Contact Us